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Abstract

Double di�usive natural convection induced in a vertical porous layer subject to opposing horizontal gradients of
heat and mass is studied analytically and numerically using the Darcy model with the Boussinesq approximation.

The governing parameters for the problem are the thermal Rayleigh number, RT, the Lewis number, Le, the
buoyancy ratio, N and the aspect ratio, A, of the enclosure. The analytical solution is developed on the basis of the
parallel ¯ow approximation. A numerical study is performed to validate the results of the analytical predictions. It
is demonstrated in this study that there exists a domain in (Le, N ) plane where, at large RT, boundary layer pro®les

are obtained for the velocity and density but not for the temperature and concentration. The boundary layer
regimes obtained for this domain (N< 0) are extremely di�erent from those found in the previous studies for the
case of aiding buoyancy forces (N>0). # 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

Double di�usive natural convection induced in a

¯uid-saturated porous medium is widely encountered

in nature and technological processes. The engineering

applications of the problem are of importance in many

situations like the migration of moisture through air

contained in ®brous insulations, food processing, con-

taminant transport in ground water, electrochemical

processes, etc. While considerable research has been

carried out on thermally driven natural convection in

porous media (see for instance Nield and Bejan [1]),

relatively less work has been done on natural convec-

tion due to combined buoyancy forces. The aim of the

present study is to discuss a boundary layer solution

for free convection, within a rectangular cavity, due to

opposing buoyancy e�ects (N<0).

Past studies on double di�usive convection in a ver-

tical porous enclosure indicate that the resulting ¯ows

can be very di�erent from those driven by the tempera-

ture ®eld solely, especially when the buoyancy forces

are opposing each other. For instance, for the case of

opposing and equal buoyancy forces (N=ÿ 1) the rest

state, in a vertical cavity with constant temperature

and concentration on the vertical walls, is an exact sol-

ution of the problem. The stability of this solution was

investigated by Charrier-Mojtabi et al. [2] on the basis

of the linear stability theory. The critical Rayleigh

number, for the onset of supercritical convection, was

derived by these authors in terms of the aspect ratio A

of the cavity and the Lewis number Le. Their results

were extended by Mamou et al. [3] to consider the case

of an inclined cavity. It was demonstrated that for

values of Lewis number around unity, overstability is

possible, provided that the normalized porosity of the
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Nomenclature

A aspect ratio of the enclosure, H '/L '
D mass di�usivity of species
g gravitational acceleration

H ' height of the enclosure
j ' constant mass ¯ux per unit area
K permeability of the porous medium

L ' thickness of the enclosure
Le Lewis number, a/D
N buoyancy ratio, bSDS '/bTDT '
Nu Nusselt number, Eq. (7)
q ' constant heat ¯ux per unit area
RT thermal Darcy±Rayleigh number, gbTKq 'L '2/(lan )
S dimensionless concentration, (S 'ÿS '0)/DS '
Sh Sherwood number, Eq. (7)
S '0 reference concentration
DS ' characteristic concentration, j 'L '/D
t dimensionless time, t 'a/(L '2s )
T dimensionless temperature, (T 'ÿT '0)/DT '
T '0 reference temperature

DT ' characteristic temperature, q 'L '/l
(u, v ) dimensionless velocities in (x, y ) directions, (u 'L '/a, v 'L/a )
(x, y ) dimensionless coordinates axis, (x '/L ', y '/L ')

Greek symbols

a thermal di�usivity
bS concentration expansion coe�cient
bT thermal expansion coe�cient

e normalized porosity, E/s
E porosity of the porous medium
l thermal conductivity

n kinematic viscosity of the ¯uid
r density of the ¯uid mixture
ra dimensionless density of the ¯uid, ÿ(T+NS )
(rc )f heat capacity of ¯uid mixture

(rc )p heat capacity of saturated porous medium
s heat capacity ratio, (rc )p/(rc )f
C dimensionless stream function, C'/a
z dimensionless vorticity, z 'L '2/a
Z inertial parameter, (CaKa )/(sL 'n )

Superscript
' dimensional variable

Subscripts
max maximum value
min minimum value

0 reference state
S solutal
T thermal
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porous medium is made smaller than unity. The case

of a vertical cavity with constant gradients of tempera-
ture and concentration prescribed on the vertical walls
of the enclosure has been considered by Mamou et al.

[4]. A linear stability was carried out to describe the
oscillatory and the stationary instability in terms of the
governing parameters of the problem. By using the

parallel ¯ow approximation it was demonstrated that
there exists a subcritical Rayleigh number at which a

stable convective solution bifurcates from the rest state
through ®nite amplitude convection. The e�ect of the
Darcy number on the subcritical Rayleigh number was

investigated analytically and numerically by Amahmid
et al. [5]. Their results were found to reduce to the
regular Darcy's law and viscous ¯ows solution in the

limits of low and high porosities, respectively.
A limited number of investigations concerning

double di�usive natural convection in rectangular por-
ous enclosures, induced by opposing buoyancy e�ects,
have been reported in the literature. Trevisan and

Bejan [6] used numerical methods to study heat and
mass convection in a square cavity subjected to heat

and mass gradients in the horizontal direction. They
observed that the Nusselt and Sherwood numbers were
minimum in the vicinity of N= ÿ 1. Similar results

have been reported by Lin [7], Alavyoon et al. [8],
Mamou et al. [9] and Nithiarasu et al. [10] for a var-
iety of boundary conditions. It was demonstrated nu-

merically by Alavyoon et al. [8] that there is a domain
of N (<0) in which oscillating convection is obtained

for a given set of the governing parameters. Outside
this domain, the solution approaches steady-state con-
vection. Also, for opposing forces, the existence of

multiple solutions has been demonstrated analytically
and numerically by Mamou et al. [9] and [11] and
Amahmid et al. [12]. For a given value of N, it was

demonstrated in Ref. [11] that both Lewis and
Rayleigh numbers have an in¯uence on the domain of

existence of these multiple steady state solutions.
The objective of the analytical and numerical work

of the present study is to discuss the existence of

boundary layer ¯ows induced by opposing buoyancy
e�ects in a vertical slot. Boundary layer analyses have
been used in the past by Trevisan and Bejan [6] and

[13], Alavyoon [14] and Mamou et al. [9], among
others, to study the natural convective ¯ows due to the

combined thermal and species di�usion e�ects. In gen-
eral, boundary layer models are expected to be invalid
when the two buoyant mechanisms oppose each other,

and are of the same order. However, it is demonstrated
in this investigation that there exists a domain of the
Lewis number and the buoyancy ratio N (N < 0) in

which boundary layer solutions are possible for large
Rayleigh numbers.

In the following, the mathematical model and the
solution procedure are discussed. The results presented

here are relevant to a better understanding of double
di�usive ¯ows in porous media.

2. Mathematical model

The studied con®guration is a two dimensional rec-
tangular porous matrix of height H ' and width L '. The
geometry of the enclosure is sketched in Fig. 1. The

vertical sides of the enclosure are subjected to constant
¯uxes of heat q ' and mass j ' while its horizontal sides
are isolated. The ¯uid saturated porous medium is

assumed isotropic and homogeneous and the Darcy
model is considered. Using the Boussinesq approxi-
mation and assuming constant properties, the dimen-

sionless equations governing this problem are:

Z
@z
@ t
� z � RT

�
@T

@x
�N

@S

@x

�
�1�

r2C � ÿz �2�

@T

@ t
� u

@T

@x
� v

@T

@y
� r2T �3�

E
@S

@ t
� u

@S

@x
� v

@S

@y
� 1

Le
r2S �4�

The velocity pro®les are related to the stream function

by

u � @C
@y

; v � ÿ@C
@x

�5�

where z, C, T and S are the dimensionless vorticity,
stream function, temperature and concentration, re-

Fig. 1. Schematic diagram of the studied system.
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spectively. The parameter RT is the thermal Rayleigh
number, N the buoyancy ratio and Le the Lewis num-

ber. The constant Z is given by Z=(CaKa )/(sL 'n ),
where Ca is an acceleration coe�cient [1]. Preliminary
tests have indicated that an adequate choice of the par-

ameter Z, used here as a relaxation factor in the nu-
merical method, reduces considerably the computation
time.

The boundary conditions for Eqs. (1)±(5) are:

C � 0; @T=@x � @S=@x � 1 for j x j� 1=2

C � @T=@y � @S=@y � 0 for j y j� A=2 �6�

The heat and mass transfer rates are of interest in

many engineering applications. They are evaluated in
terms of the Nusselt and Sherwood numbers which are
given respectively by:

Nu � 1

T� 12 , 0� ÿ T�ÿ 1
2 , 0�

,

Sh � 1

S� 12 , 0� ÿ S�ÿ 1
2 , 0�

�7�

Note that, according to the boundary conditions (Eqs.
(6)), the thermal buoyancy forces tend to induce a
counterclockwise ¯uid circulation while the solutal

buoyancy forces tend to induce a clockwise ¯uid circu-
lation for N < 0 (case of opposing ¯ows) and a
counterclockwise ¯uid circulation for N>0 (case of

cooperative ¯ows).

3. Numerical method

The governing equations are discretized according to
the central ®nite di�erence scheme. The iterative pro-
cedure is performed using the alternate direction im-

plicit method (ADI). The streamfunction ®eld is
determined from Eq. (2) using the successive over
relaxation method (SOR). The calculation domain was

divided into three regions in the horizontal direction
(x-direction). For the two regions adjacent to the verti-
cal walls where the horizontal gradients are important
(boundary layer regions) a uniform ®ne grid was used

while a coarse uniform grid was employed for the cen-
tral region of the cavity. First order accurate discreti-
zation was used in the interface between two di�erent

grids. In some situations, this procedure was also
applied to the y-direction to re®ne the grid in the vicin-
ity of the horizontal walls. At high RT and A, the cen-

tral di�erence scheme caused numerical instabilities in
a few cases among those considered in this study. The
problem was solved in these particular situations by

using a second upwind di�erencing scheme [15] to dis-
cretize the temperature and concentration equations.

4. Analytical solution

For large aspect ratio (A>>1) it has been demon-

strated in the past by several authors [5,9,12,14] that
the present problem can be signi®cantly simpli®ed by
the approximation of the parallel ¯ow. With this ap-
proximation u=0 and v=v(x ) in the central part of

the cavity, i.e. outside the end regions. The approxi-
mation allows the following simpli®cations:

C�x,y� � C�x�

T�x,y� � CTy� yT�x�

S�x,y� � CSy� yS�x� �8�
where CT and CS are unknown temperature and con-
centration gradients respectively in the y-direction.

Those gradients are determined by imposing zero heat
and mass transfer across any transversal section of the
cavity.
Introducing these approximations into the steady

state form of Eqs. (1)±(4) and solving the resulting
equations, together with the boundary conditions (6),
it is found (see for instance Refs. [9] and [14]) that the

solution depends on the sign of the parameter O2,
de®ned as

O2 � RT�NLeCS � CT� �9�
Of particular interest is the boundary layer ¯ow

regime for which it is possible to simplify the resulting
solution. In the following discussion it is assumed that
O2>0, since only positive values of this parameter can

lead to boundary layer behaviors. It can be easily
shown that, for x>0, the boundary layer regime
(O>>1) is described by the following equations:

C�x� � a�1ÿ eO�xÿ1=2��; v � aOeO�xÿ1=2� �10�

T � CTy� �1ÿ aCT�x� aCT

O
eO�xÿ1=2� �11�

S � CSy� �1ÿ aLeCS�x� aLeCS

O
eO�xÿ1=2� �12�

where a=RT(N+1)/O2 and

CT � a�1ÿ 2=O�
1� G�1ÿ 3=O� ; CS � aLe�1ÿ 2=O�

1� Le2G�1ÿ 3=O� �13�

Substituting Eqs. (11) and (12) into Eqs. (7) yields the
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following expressions for the Nusselt and Sherwood
numbers

Nu � 1� G�1ÿ 3=O�
1� G�1ÿ 4=O�=O ;

Sh � 1� Le2G�1ÿ 3=O�
1� Le2G�1ÿ 4=O�=O �14�

In the above equations, G is given by

G � a2 � O
2C1

�
C22

������������������
C 2

2 � C3

q �
�15�

where C1=Le 2(Oÿ 3)(N+1), C2=(Oÿ 3)(N+Le 2)ÿ 1

ÿ NLe 2 and C3=4C1(N+1). It is noted that since
G>0 and C3>0, it follows that only one of the two re-
lations of Eq. (15) is to be considered (the choice of

which depends on the sign of C1).
The parameter O is a measure of the inverse of the

thickness of the vertical boundary layer (d01/O). For
su�ciently large values of this parameter (O>>1), Eq.
(15) reduces to

G � d1O if d1 > 0 �16�

and

G � ÿ1
d1Le2

� ÿ�1�N �
�N� Le2� if d1<0 �17�

where d1=(1+N/Le 2)/(1+N ).
The solution corresponding to Eq. (16) has been

largely discussed in the past. The purpose of the pre-
sent study is to point out the particularity of the sol-
utions predicted by Eq. (17). It is to be noted that this

type of solution is possible only in the case of oppos-
ing ¯ows (N<0) and requires the following condition:

ÿ max�1,Le2�<N<ÿ min�1,Le2� �18�

The domains where these conditions are satis®ed are
delineated in Fig. 2. They correspond to region 2 in
the (Le, N ) plane. For this situation, when RT is suf-
®ciently large, O is given, according to Eq. (17), by

O � R1=2
T j �1�N ��N� Le2� j1=4 �19�

4.1. E�ect of RT

In this section the e�ect of RT will be discussed for
given values of N and Le. For the boundary layer ¯ow
regime corresponding to the case of d1>0, it has been

demonstrated in Refs. [9] and [14] that O and G vary
as R 2/5

T , the maximum velocity v(x=1/2) varies as
R 3/5

T and the ¯ow intensity C0=vC(x=0)v varies as

R 1/5
T . As a result, at high values of RT, Nu and Sh vary

as R 2/5
T , CT and CS vary as Rÿ1/5T and the vertical gra-

dients of both T and S are nearly zero in the cavity. In
addition, the horizontal gradients of both T and S are

also nearly zero outside a very thin layer adjacent to
the vertical boundaries. This implies that the horizon-
tal pro®les of T and S exhibit the boundary layer

behavior. Furthermore, the increase of RT tends to
make uniform the temperature and concentration (and
thereby the density) in the core region of the enclosure.

The above results are fundamentally di�erent for the
case d1 < 0 and large RT as it will be discussed now.
For this situation, O and v(x=1/2) vary as R 1/2

T and

Fig. 2. Domains corresponding to di�erent boundary layer regimes.
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consequently, G and thereby C0, CT, CS, Nu and Sh
become independent of RT. At this stage it is con-

venient to introduce the parameter ra which character-
izes the dimensionless density of the binary ¯uid as

ra � ÿ�T�NS �

� ÿ�CT �NCS�yÿ �1�N �
O

eO�xÿ1=2� �20�

as predicted by Eqs. (11)±(13) and (17).

The above equation clearly shows that, at large RT,
the horizontal gradient of the density (@ra/@x ) becomes
zero in the core region while the vertical gradient of

the density (@ra/@y ) becomes constant and is given by

@ra

@y
� ÿ�ÿ�1ÿN ��N� Le2��1=2

Le� 1
�21�

Furthermore, if Le>>1 and Le 2>>vNv, this above gradi-
ent corresponding to RT 4 1 can be related to the
horizontal gradient of the di�usive regime (RT=0) by:

�
@ra

@y

�
RT41

� ÿ
��������������������
ÿ�1�N �

p
� ÿ

������������������������
@ra

@x

�
RT�0

s
� 0 �22�

In other words, this means that for this case, the con-

vective boundary layer ¯ow makes zero the horizontal
gradient obtained for the di�usive regime and creates a
vertical gradient of the density equal to the square

root of the horizontal di�usive one. This behavior is
qualitatively similar to that obtained at large RT in the
case of a rectangular cavity with vertical walls main-
tained at di�erent constant temperatures where the

thermal natural convection tends to make zero the
horizontal gradient of the temperature (and thereby
that of the density) in the core region and imposes a

vertical strati®cation which is not existing in the dif-
fusive regime. It can be easily veri®ed that for d1>0,
both horizontal and vertical gradients of the density

are zero at large RT.
For the case of d1< 0, it is readily found from Eqs.

(14) and (17) that the parameters Nu, Sh and C0 tend
towards the following constant values as RT41:

Nu4
Le2 ÿ 1

N� Le2
, Sh4ÿNNu, C04

����
G
p

�23�

while the temperature and concentration distributions
become linear if we except the immediate vicinity of
the vertical boundaries. They are expressed as:

T � CTy� x

Nu
and S � CSy� x

Sh
�24�

Furthermore, when the condition Le 2 >> vNv>1 is sat-

is®ed, Nu, Sh and C0 reduce to

Nu ' 1, Sh � ÿN and C0 �
������������������������������
ÿ�1�N �=Le2

p
�25�

and the horizontal gradients of T and S in the core
region are given by:

@T

@x
' 1 and

@S

@x
' ÿ 1

N
�26�

This implies that the temperature pro®le is identical to
the one corresponding to the di�usive regime. In ad-

dition, if the value of vNv is of order of unity, the con-
centration gradient in the core region is of the same
order as that in the immediate vicinity of the vertical

boundaries (where @S/@x=1) and it becomes obvious
in this case that the temperature and the concentration
pro®les have not got the characteristics of the bound-

ary layer pro®les. Nevertheless, these pro®les are such
that their combination in the relation ra=ÿ (T+NS )
leads to boundary layer pro®les for the density. In fact

it is clear from Eq. (26) that the horizontal gradient of
the density (@ra/@x ) is zero in the core region at large
RT. Note that the di�usive transfers of heat and mass
in this case are of non-negligible importance even at

very large RT. The linear expressions obtained in Eq.
(24) also indicate that the contour lines of the tempera-
ture and concentration consist of straight lines tilted

with respect to the vertical direction. This result can be
clearly observed on the contour lines reported in Ref.
[9] for RT=50, Le=10 and N=ÿ 1.8. The inclination

angles (with respect to the vertical direction) of the
temperature and concentration contour lines denoted
respectively by jT and jS, and the gradients of these
two quantities in the normal direction to the contours

(outside a very thin layer adjacent to the vertical
boundary) are given by

cos�jT� �
@T

@nT

� 1�������
Nu
p

cos�jS� �
@S

@nS

� 1������
Sh
p �27�

where nT and nS are the normals to the contour lines
of the temperature and concentration respectively. In

the case of Le 2 >> vNv>1, jT and jS verify:

cos�jT� � 1 and cos�jS� �
1��������ÿNp �28�

which means that the isotherms are vertical (jT=0)
and the inclination angle for the concentration lines is
higher (the upper limit is p/2) at higher values of ÿN.

The inclinations are in clockwise and counterclock-
wise directions respectively for N < ÿ1 and N> ÿ 1.
The relations (27) show that the characteristics of the
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heat and mass transfers, namely Nu and Sh, and

thereby the importance of the convective e�ects can be

determined by simply measuring the inclination angles

of the isotherms and isosolutes with respect to the ver-

tical direction.

The behaviors obtained for the boundary layer ¯ows

when d1 < 0 are illustrated in Fig. 3a±c where O, Sh
and C0 evolutions with RT are presented for Le=10,

N=ÿ 3 and ÿ10. It can be seen that the exact analyti-

cal solution (solid lines) based on the parallel ¯ow hy-
pothesis [9,12] agrees well with the numerical results

obtained by solving the full governing equations. The
boundary layer analytical approximations (14) and
(19) (dotted lines) are seen in good agreement with the
exact solution at relatively (depending on N ) large RT.

The agreement is obtained for RT>1 and RT>100 re-
spectively for N=ÿ 3 and N=ÿ 10. The quantities Sh
and C0 are observed to reach asymptotic variations

predicted by Eq. (25) at large RT. The Nusselt number
has also an asymptotic evolution with RT and it is well
predicted by the boundary layer approximate solutions

but it is not presented here since its values remain
always close to unity (NuE1.1) which means that the
heat transfer is always dominated by the di�usive e�ect

in this case even at very large RT. This is due to the
relatively large value of Le (Le=10) considered in this
case. Also the di�usive mass transfer is not negligible

at large RT in the case of N=ÿ 3 since the asymptotic
value of Sh is approximately equal to three times the
value of the pure di�usion (Sh23.02).

Fig. 4 illustrates the horizontal pro®les of velocity,
�v � v=vmax, temperature, �T � T=Tmax, concentration
�S � S=Smax, and density, ra � ra=ra max, at mid-height

(y=0) of the enclosure for RT=50, Le=10 and N=ÿ
3. The subscript max refers to maximum values of v,
T, S and ra obtained at y=0. It can be seen that the

numerical results are in good agreement with the exact
analytical solution. Furthermore, it is noted that the
temperature and concentration pro®les are not of

boundary layer type although the velocity and the den-
sity pro®les are so. In fact, the density and velocity
gradients are nearly zero in the core region while the
temperature and the concentration gradients are im-

portant in this region. This also con®rms the fact that
the di�usive transfer is of non-negligible importance

Fig. 3. Rayleigh number e�ect, RT, on: (a) O, (b) Sh and

(c) C0 for Le=10 and N=ÿ3 and ÿ10.

Fig. 4. Horizontal pro®les of: velocity; temperature; concen-

tration; and density for A=6, Le=10, N=ÿ3 and RT=50.
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even at large values of RT. The contour lines for the
stream function, the temperature, the concentration
and the density are presented in Fig. 5 for RT=50,

Le=10 and N=ÿ 3. The ¯ow is parallel to the vertical
walls in the core region and small recirculating cells
are induced in the vicinity of the horizontal bound-

aries. The isotherms and isosolutes are nearly straight
lines tilted with respect to the vertical direction. The
tilt angle corresponding to the isotherms is smaller

than that corresponding to the isosolutes since the tem-
perature ®eld is more in¯uenced by the di�usive e�ect
(Le>1). The tilt angles jT and jS deduced from the

numerical results are about 7.78 and 548 respectively.
Such values are close to those predicted by the analyti-
cal relations (27) namely 8.178 and 55.18 corresponding
to in®nite RT. Fig. 5 shows also that the boundary

layer ¯ow makes zero the horizontal gradient of the
density in the core region. The vertical strati®cation
observed indicates that the vertical density gradient is

not eliminated and the boundary layer ¯ow does not
tend to make uniform the density in the enclosure as is
the case with the boundary layer ¯ows corresponding

to the case d1>0. The vertical density gradient
obtained numerically for RT=50, Le=10 and N=ÿ 3
(@ra/@y2ÿ 1.21) is found to be close to the value given
by Eq. (21) (@ra/@y2ÿ1.27).

4.2. E�ect of Le

When RT and N (N<ÿ1) are maintained constant,
Eq. (19) (which is valid only for Le >

��������ÿNp
) indicates

that O increases monotonically with Le. At large Le, O
can be expressed as:

O � �RTLe�1=2 j N� 1 j1=4� R1=2
S

j N� 1 j1=4
j N j1=2 �29�

where RS=(RTvNvLe ) is the solutal Rayleigh number.
Relations (22) show that Nu and Sh have asymptotic

values: Nu 4 1 and Sh 4 ÿ N. These limits are inde-

pendent of RT and indicate that the heat transfer is

dominated by di�usion e�ects at large Le indepen-

dently of RT. Also, it is seen from Eq. (29) that the

quantity O varies as R 1/2
S . Yet, these behaviors are

di�erent from those observed for d1>0. In fact, the

results obtained by Mamou et al. [9] clearly show that

for ®xed RT and N (N>ÿ 1), O becomes independent

of Le at large values of this parameter and Nu and Sh

Fig. 5. Contour lines of: (a) stream function; (b) temperature;

(c) concentration; and (d) density for A=6, Le=10, N=ÿ 3

and RT=50.

Fig. 6. Variations with Le for N= ÿ 3, and RT=1 and 10:

(a) O variations; (b) Nu variations; and (c) Sh variations.
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Fig. 7. Variations with RT for N= ÿ 2 and Le � ���
2
p

: (a) O
variations; (b) Nu and Sh variations.

also tend towards asymptotic values at large Le.
However, these values depend on RT and the asympto-

tic heat and mass transfers (obtained at large Le ) may
be dominated by convection when RT is large enough.
The e�ect of Le on the quantities O, Nu and Sh is il-

lustrated in Fig. 6a±c for N=ÿ 3, RT=1 and 10. It is
seen from Fig. 6a that O increases monotonically with
Le and the analytical exact solution is well predicted
by the approximate relations (14) and (19) for Le>10.

Also Nu and Sh exhibit asymptotic behaviors with Le
and tend to become independent of RT at large Le.
Another type of boundary layer regime is obtained

for the particular case where N+Le 2=0 (i.e. N= ÿ
Le 2). For this situation, C1=Le 2(Oÿ 3)(1±Le 2), C2=
ÿ (1ÿ Le 4) and C3=4C1(1ÿ Le 2). If Le (and thereby

N ) is maintained constant and RT and O are su�-
ciently large, then Eq. (15) yields

G � O

Le�Oÿ 3�1=2 �30�

where

O � R4=9
T ��1ÿ Le2�2Le�2=9 �31�

At very large values of RT, Nu and Sh (Eqs. (14))
reduce to

Nu � O1=2

Le
Sh � LeO1=2 � Le2Nu �32�

It is clear that for this particular situation, O varies as
R4/9

T and Nu and Sh varies as R 2/9
T . The corresponding

variations of O, Nu and Sh with RT are illustrated in
Fig. 7a and b for N=ÿLe 2=ÿ 2. It can be seen from
Fig. 7a that for RT>10, the approximate solution of O
(Eq. (31)) coincides with the exact one. For Nu and
Sh, the approximate solutions are based on Eqs. (14),
(30) and (31). It can be seen from Fig. 7b that they
(approximate solutions) are close to the exact solutions

at large RT.
The domains corresponding to the di�erent bound-

ary layer ¯ows that may be encountered in this prob-

lem are presented in Fig. 2. For region 1 (and for aid-
ing ¯ows: N>0) O varies as R 2/5

T . For region 2, O var-
ies as R 1/2

T . For the curve N=ÿLe 2, O varies as R 4/9
T .

For N=ÿ 1 there is no boundary layer ¯ow since con-
vective solutions corresponding to O2>0 are not poss-
ible in this case. This situation has been discussed in

details in Refs. [2±4].

5. Conclusion

Double di�usive natural convection is studied ana-
lytically and numerically in a vertical porous layer sub-
mitted to constant ¯uxes of heat and mass on its

vertical sides. It is demonstrated in the case of oppos-
ing ¯ows that there exists a domain in the (Le, N )
plane where a boundary layer regime can be observed
for the velocity and density pro®les even though

neither the temperature nor the concentration pro®les
exhibit such a behavior. The boundary layer thickness
for the resulting ¯ow varies as Rÿ1/2T . Linear distri-

butions are obtained for the temperature and concen-
tration at large RT and Nu and Sh exhibit asymptotic
evolutions with this parameter. In particular, it is

demonstrated that Nu 4 1, Sh 4 ÿ N and C0 4 Le
vN+1v1/2 when the condition Le 2 >> vNv>1 is satis®ed.
Furthermore, the di�usive heat and mass transfers can
be of non-negligible importance even at very large

values of RT. Also for given RT and N< ÿ1 and for
su�ciently large Le such that (Le 2+N )(1+N ) < 0,
the heat and mass transfers are constant and indepen-

dent of RT and Le and the boundary layer thickness is
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monotonically decreasing with Le. However, for given
N> ÿ 1, the results obtained for the heat and mass

transfer rates at large Le are depending on RT and
may be dominated by convection if RT is large enough.
For this case, the boundary layer thicknesses present

an asymptotic evolution with Le. Finally, the existence
of a particular boundary layer regime has been pre-
dicted in this study for the particular case where

N+Le 2=0. For this situation, O0R 4/9
T , Nu0R 2/9

T and
Sh0R 2/9

T .
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